Table of Contents

1 Building blocks and interactions

1.1. What are the nuclei made of 
1.2. Proton and neutron
1.3. Strong interactions 
1.4. Electromagnetic interactions and charge distribution 
1.5. Magnetic properties 
1.6. Weak interactions 
1.7. Neutron decay 
1.8. Nuclear world

2 Isospin

2.1. Quantum numbers in the two-body problem 
2.2. Introducing isospin 
2.3. Isospin invariance 
2.4. Space-spin symmetry and isospin invariance 
2.5. Glimpse of a more general picture 
2.6. Relations between cross sections 
2.7. Selection rules 
2.8. Isobaric mass formulae

3 Two-body dynamics and the deuteron

3.1. Low-energy nuclear forces 
3.2. Example: Argonne potential 
3.3. Meson exchange 
3.4. Deuteron: Central forces and s-wave 
3.5. Tensor forces and d-wave 
3.6. Magnetic dipole moment 
3.7. Electric quadrupole moment

4 Two-body scattering

4.1. Scattering problem 
4.2. Phase shifts 
4.3. Scattering length 
4.4. Sign of the scattering length 
4.5. Resonance scattering at low energies 
4.6. Effective radius 
4.7. Scattering of identical particles 
4.8. Coulomb scattering
4.9. Coulomb-nuclear interference

5 Liquid drop model

5.1. Binding energies 
5.2. Shape variables 
5.3. Microscopic variables 
5.4. Multipole moments 
5.5. Kinetic energy and inertial parameters 
5.6. Shape vibrations 
5.7. Stability of the charged spherical liquid drop


6 Vibrations of a spherical nucleus 

6.1. Sound waves 
6.2. Isovector modes 
6.3. Giant resonance and linear response 
6.4. Classification of normal modes 
6.5. Quantization of nuclear vibrational modes 
6.6. Multiphonon excitations 
6.7. Angular momentum classification


7 Fermi gas model

7.1. Mean field and quasiparticles 
7.2. Perfect Fermi gas 
7.3. Ground state 
7.4. Correlation between particles 
7.5. Asymmetric systems and chemical equilibrium 
7.6. Pressure and speed of sound 
7.7. Gravitational equilibrium.

8 Spherical mean field

8.1. Introduction 
8.2. Magic numbers 
8.3. Separation energy 
8.4. Periodicity of nuclear spectra 
8.5. Harmonic oscillator potential 
8.6. Orbital momentum representation 
8.7. Square well potential 
8.8. Spin-orbit coupling 
8.9. Realistic level scheme 
8.10. Semiclassical origins of shell structure

9 Independent particle shell model

9.1. Shell model configurations 
9.2. Particle-hole symmetry 
9.3. Magnetic moment 
9.4. Quadrupole moment 
9.5. Recoil corrections 
9.6. Introduction to group theory of multi-particle configurations


10 Light nuclei

10.1. A short walk along the beginning of the nuclear chart 
10.2. Halo in quantum systems 
10.3. Nuclear halos 
10.4. One-body halos 
10.5. Two-body halos 
10.6. Efimov states

11 Many-body operator formalism

11.1 Secondary quantization  
11.2. Physical observables: one-body operators 
11.3. Two-body operators 
11.4. Interparticle interaction 
11.5. Interaction in a spherical basis. 
11.6. Recoupling of angular momentum

12 Nuclear deformation

12.1. Idea of nuclear deformation 
12.2. Collective model
12.3. Adiabatic approximation 
12.4. Onset of deformation 
12.5. Quadrupole deformation in the body-fixed frame 
12.6. Quadrupole shape variables 
12.7. Variety of quadrupole shapes 
12.8. Empirical deformation 
12.9. Single-particle quantum numbers 
12.10. Anisotropic harmonic oscillator 
12.11. Asymptotic quantum numbers
12.12. Nilsson potential 
12.13. More examples

13 Pairing correlations

13.1. Physical evidence 
13.2. Seniority scheme 
13.3. Multipole moments in the seniority scheme 
13.4. Degenerate model 
13.5. Canonical transformation 
13.6. BCS theory: Trial wave function 
13.7. Energy minimization 
13.8. Solution for the energy gap
13.9. Excitation spectrum 
13.10. Condensation energy 
13.11. Transition amplitudes

14 Gamma-radiation

14.1. Introduction  
14.2. Electromagnetic field and gauge invariance  
14.3. Photons  
14.4. Interaction of radiation with matter  
14.5. Radiation probability  
14.6. Electric dipole radiation  
14.7. Electric quadrupole radiation  
14.8. Magnetic dipole radiation  
14.9. Photoabsorption  
14.10. Multipole expansion

15 Nuclear gamma-transitions

15.1. Single-particle transitions  
15.2. Collective transitions  
15.3. Nuclear isomerism  
15.4. Isospin  
15.5. Structural selection rules 
15.6. Monopole transitions  
15.7. Internal electron conversion  
15.8. Coulomb excitation  
15.9. Nuclear photoeffect  
15.10. Electron scattering

16 Nuclear rotation

16.1. Introduction: rotational bands  
16.2. Finite rotations  
16.3. Rotation matrices as functions on the group  
16.4. Euler angles  
16.5. Angular momentum in Euler angles  
16.6. Eigenfunctions of angular momentum 
16.7. Rigid rotor  
16.8. Symmetry properties  
16.9. Simplest solutions  
16.10. Ground state band  
16.11. Intensity rules  
16.12. Electric quadrupole moment  
16.13. Magnetic moment  
16.14. Symmetry properties revisited  
16.15. Coriolis mixing and decoupling parameter  
16.16. Classical rotation and Routhian 
16.17. Cranked rotation  
16.18. Moment of inertia  
16.19. Adiabatic expansion  
16.20. Rotation of a perfect Fermi gas  
16.21. Perfect Bose gas and ideal liquid 
16.22. Pairing effects  
16.23. Band crossing


17 Self-consistent field

17.1. Exchange interaction 
17.2. Hartree-Fock equations 
17.3. Operator formulation 
17.4. Single-particle density matrix 
17.5. Hartree-Fock-Bogoliubov approximation 
17.6. General canonical transformation 
17.7. Solutions 
17.8. Generalized density matrix 
17.9. Pairing and particle number conservation 
17.10. Effective interaction 
17.11. Skyrme functionals 
17.12. Generalization
to non-zero temperature

18 Collective modes

18.1. Schematic model 
18.2. Random phase approximation 
18.3. Canonical form of the RPA 
18.4. Model with factorized forces 
18.5. Collective modes as bosons 
18.6. Mapping of dynamics 
18.7. Normalization and the mass parameter 
18.8. Symmetry breaking 
18.9. Generator coordinate method

19 Bosons, symmetries and group models

19.1. Introduction 
19.2. Low-lying quadrupole excitations as interacting bosons 
19.3. Algebra of boson operators 
19.4. Subgroups and Casimir operators 
19.5. s-d model 
19.6.Irreducible representations and quantum numbers 
19.7. Vibrational limit 
19.8. O(6) limit 
19.9. SU(3) limit 
19.10. Shapes and phase transitions in IBM

20 Statistical properties

20.1. Introduction 
20.2. Level density: general properties 
20.3. Darwin-Fowler method 
20.4. Relation to statistical thermodynamics 
20.5. Thermodynamics of a nuclear Fermi gas. 
20.6. Statistics of angular momentum 
20.7. Shell Model Monte Carlo approach 
20.8. Thermodynamics of compound reactions 
20.9. Statistical description of resonances

21 Nuclear fission

21.1. Introduction 
21.2. Alpha-decay 
21.3. Neutron fission 
21.4. Photofission 
21.5. Fission as a large-amplitude collective motion 
21.6. Non-adiabatic effects and dissipation 
21.7. Fission isomers 
21.8. Parity violation in fission

22 Heavy ion reactions: Selected topics

22.1. Introduction 
22.2. Experimental indications 
22.3. Macroscopic description
22.4. Equilibration as a diffusion process 
22.5. Towards a microscopic description 
22.6. Sketch of a more general approach 
22.7. A simple model 
22.8. Nuclear multifragmentation 
22.9. More about fusion reactions


23 Configuration interaction approach

23.1. Center-of-mass problem 
23.2. Matrix elements of two-body interactions 
23.3. Ab-initio approach 
23.4. Three-body forces 
23.5. Semiempirical effective interactions 
23.6. Hamiltonian matrix, properties and solutions
23.7. Effective non-Hermitian Hamiltonian 
23.8. Realistic nuclear calculations


24 Weak interactions

24.1. Introduction 
24.2. Beta spectrum in the simplest case 
24.3. Nuclear transitions 
24.4. Dirac formalism  
24.5. Four-fermion theory 
24.6. Nuclear structure effects 
24.7. Parity violation 
24.8. Electric dipole moment 
24.9. Nuclear enhancement 
24.10. On the way to electroweak theory 
24.11. Higgs mechanism 
24.12. Neutrino: oscillations 
24.13. Neutrino: Majorana or Dirac?


25 Nucleus as chaotic system

25.1. Introduction 
25.2. Strength function 
25.3. Level density revisited 
25.4. Complexity of wave functions 
25.5. Correlations between classes of states 
25.6. Invariant entropy 
25.7. Random matrix ensembles 
25.8. Thermalization


 

Published on  November 22nd, 2016